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1. Phys. A h t h .  Gen. 27 (1994) L591-IJ96. Printed in the UK 

LETTER TO THE EDITOR 

T r a c  models with disorder 

Z Csah6kt and T VicsektS 
t Department of Atomic Physics, EGlvlls University, Budapest, Puskin U 5-7, 1088 Hungary 

JnSt i tu te  for Technical Physics. Budapest, POB 76, 1325 Hungary 

Reeeived 24 lune 1994 

Abstract. We propose tmfl5e mod& with quenched noise in order to investigate the effcas 
of disorder on the flow propemef in complex transpon synems. In h e  oncdimcnsionaI model 
we studied in detail. we observed insfabilities Wih respect to disorder and traositions between 
various modes of propagarion. 

In recent years much attention has been attracted by transport phenomena in complex 
systems, including such special examples as flows in granular materials [1,2], data 
propagation in complex computer networks [3], collective migration in biological systems 
141 and highway traffic flow 151. A common aspect of these examples is the existence of 
jamming (or jamming transition): if there are too many particles in the system they inhibit 
each other’s motion and thh results in halting of the flow in extensive regions. This effect 
determines the non-trivial transport propeIties of such flows, and it is likely to exist in most 
of the driven or self-driven systems containing moving particles with dissipative interaction. 

To understand the mechanism leading to jamming in realistic traffic situations several 
models have been introduced. For the ID case a cellular automaton model has been 
investigated both numerically r5.61 and theoretically [71. There is also a continuum equation 
approach for this case [SI and pattem formation aspects based on the flow characteristics 
have also been studied [9]. For the ZD case, which is the more realistic one, cellular 
automaton models have been studied [10-12], and signs of first-order phase transitions have 
been found. 

We present a model for onedimensional flow in the presence of quenched noise. Our 
model is based on the ID model of Schreckenberg and Nagel 151, which has been thoroughly 
analysed by Nagel and Hemnann [6]. 

N cars (particles or data packets) are arranged in a one-dimensional lattice (path) of 
length L with periodic boundary conditions. The position of the cars are denoted by xi 
(i = 0, 1, . . . , L - 1) and to each of them a velocity (v i )  is assigned which has integer 
values and can vary in the range 0 < vi < 5, corresponding to the choice U,, = 5 in the 
original model. We assign to each position along the path an integer si corresponding to the 
‘inverse permeability’ of that part of the path: the rougher the road the larger is the value 
of si. The si values are fixed in time, i.e., they represent a quenched disorder. 

At each time step the position and the velocity of each car are updated simultaneously 
(parallel update) according to the following rules: 

Step 1. If vi < 5 and the distance from the car ahead (d = (xi+l - x i )  mod L) is greater 
than vi + 1 then vi is increased by one (vi t ui + 1, acceleration); 

Step 2. If the distance from the car ahead is less than vi + 1 then vi c d - 1 (slowing 
down); 
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Step 3. If ui > 0 then ui is randomly decreased by 1 with probability p (random slowing 

Step 4. The car is moved forward variable y is set to x i  and then y is incremcnted by 
down); 

1 while the condition 

Y 

j=xi 
csj < vi 

is satisfied. 
Step 5. The velocity is set to the actual forward move of the car: 

vi c (y - x i )  mod L 

and its position is updated xi c y. 
In the case of si = 1 this update corresponds to a forward move by U; sites as in the 

model in [5]. The sites with si z I will cause slowing down of the flow, since they make 
the cars move a shorter distance than they would travel in the case of free propagation 
(si 3 1). For example a car entering a region with si = 2 at speed U = 4 moves only 
two sites and its speed decreases to U = 2. 'Therefore sites with si > 1 are referred to as 
curbs in the road. Allowing the si values to change in time would cause the same random 
slowing down effect as step 3 does, which is equivalent to a shot noise. Throughout this 
letter we will focus on the case when the si - s can have values 1 and 2 only. The density 
of sj = 2 sites (curbs) is another parameter in the model 

# of curbs 
system size' 

r =  

Let us now introduce the quantities used for characterizing the flow. The number of 
cars (N) is preserved in the present dynamics, so it is straightforward to use the global 
density 

N p = -  
L 

as a control parameter. One can introduce the local density of cars at site x which is 
defined as 

where n,(t) = O(1) if site x is empty (occupied) at time step t .  The global density can be 
expressed through the local density in the following way: 

The average car flow is defined by 
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where n,,,+l (t)  = 1 if a car passed the border between sites x and x + 1 at time step& and 
zero otherwise. Note that j is independent of x ,  this is due to the fact that in the stationary 
state the flow should be uniform at each site due to car conservation. 

The value of h is irrelevant in the infinite time limit (T -+ CO). In the simulations we 
used a large, but finite averaging time T, and also a large enough time io for relaxation. The 
plots in the figures were obtained by averaging over 20 x L timesteps (full updates) after 
relaxation taking 5 x L timesteps. The stationarity was checked by comparing averages 
over different times. 

Using the quantities defined above we have performed runs for several different 
parameter values in order to find the change in the fundamental diagram, i.e., in the flow 
(j) versus global density ( p )  plot. 

Let us first consider the deterministic case ( p  = 0 in step 3). Figure 1 shows the j-p 
curve at different amounts of curbs present in the system of size L = 1024. For the case 
when only one curb is present the plot significantly differs from the curb free (r = 0) 
case. It has an overshoot unlike the curves obtained by the original model. This curve 
was obtained by averaging over the quenched randomness, for a given realization of the 
quenched noise the overshoot is more characteristic. The simulations for a larger system 
(L = 2048) gave the same plot so we can draw the conclusion that the original model 
is unsrnble against the quenched noise. We conjecture that this is the case even in the 
thermodynamic limit L -+ m. The one-curb case can be interpreted as a change in the 
boundary condition. An analogous situation has been intensively studied for the related 
asymmetric exclusion model [13,14]. 

i I 
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Figurel. ~ e ~ n d ~ e n ~ ~ ~ o f t h e d ~ ~ ~ t i c " ~ t 0 f ~ m o d e I f ~ v ~ o u s ~ n s i ~  
of the curbs in a system of size L = 1024. The top curve is for the curb-free (r = 0) case. The 
next c w e  downwards is for a single curb (.r = l/L*), and the further e w e s  are for increasing 
(finite) curb densities (r = 0.01.0.1,0.2.. . I ) .  

As we add more curbs to the system the fundamental diagram first changes to a shape 
with a plateau at j = 0.5 then continuously crosses over to a stepwise linear curve with 
a plateau at j = 0.333. Note that for high car densities the system is insensitive to the 
quenched disorder since, even for si 1, jamming is present 
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When adding a small shot noise to the system ( p  = 0.01) the Bow properties are 
changed again. Figure 2 shows the fundamental diagram for this case. The curve for one 
curb is smoothed out by the noise, although a very small overshoot is still present. The 
stepwise linear curve for r = 1 loses stability and is replaced by the j / p  = I curve for 
p c 0.5. 

i 

P 

Figure 2. I l~e  same diagram as figure I but for fhe model with very small shot noise ( p  = 0.01). 

Next we give a theoretical argument for the observed instability at high curb densities 
(r = 1). When the global density of cars is small the interaction represented in the model 
by step 2 can be neglected. For this case one can write down a master equation for the 
velocity distribution of a single car. Let us introduce the probability p i  of a car having 
speed U at time t. After a single update of the system this car is assigned the speed w with 
certain probability MW,". We have from pk+' = C:, M,,,,,p: the following equation for 
the stationary speed distribution: 

5 

P w  = C M W , " P "  
"d 

which is an eigenvector problem for M. The elements of the matrix M are exactly calculated 
by numerically averaging over all possible realizations of the relevant part of the mad ahead 
of a car. Since U,,,, is finite (5) only a finite number of sites need to be considered. With 
this method both random slowing down and quenched curbs can be exactly considered, 
and for M an analytic expression is found. The only approximation is that we neglect the 
interaction between the cars, which can be handled by introducing the combined speed- 
distance distribution. 

The results for the average speed (3 = j / p  = x, up.) obtained by this method are 
presented in figure 3. These plots clearly indicate that for r = 1 the j / p  = 2 solution 
becomes unstable for p > 0 and replaced by j / p  = 1, as we have seen in the previous 
section. For r = 0 the calculation reproduces the trivial result 

j / p  = 5 - p .  
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Figure 3. The average speed ( j / p )  in the lowcar-density limit. The w e s  show he results of 
the analytic calculation for no shot noise (t6p curve) and for incleasing shot noise (from top to 
bottom p = 0.01.0.1.0.3.0.6.0.9). The points represent the average speed obtained from the 
curves on figure 1 (boxes, p = 0) and figure 2 (crosses, p = 0.01). 

.+ 

Figure4. Motionofthe~inthespaoetimedomain. Eachdotrepresentsacar,theyaremoving 
downwards in the fim subsequent iterations are plotted side-by-side, so the horiwntd axis is 
the time. The system size is 128 sites of whicti 25 are filled with cars, the figure shows 8192 
iterations. A small shot noise ( p  = 0.005) is applied and only one curb is present (armw). 

Let us now analyse the ffow with one curb in the system. If there are curbs in the 
system (r z 0) then the originally existing translational s y m e b y  is broken. Therefore in 
the case of one curb the jam occurs behind it (figure 4). ,and not at a random site as in the 
r = 0 case. 

0.13.. .0.5 we have observed 
two differ nt regimes. In the region 0.133 < p 4 0.333 two types of jams can exist: one 
with f i m  : : 0.333 and j = 0.66 and the other with hoe = 0.5 and j = 0.5. The former 
corresponds to the configuration 

Havinr examined numerically the density region p 
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. . .0.00.00.0 '. . 

and the latter to 

~~~0.0.0.0.0~~~ 

where 0 denotes a car and 0 is an empty site. Both of them are stable modes. In the 
presence of random noise the system switches between these two modes (see figure 4), 
resulting in jams of different sizes. As we can see from figure 1 the flow rate linearly 
decreases in this region, this is related to the fact that the two jammed phases have weights 
linearly changing with p. 

For 0.333 < p < 0.5 only the lower density jam @ = j = 0.5) remains stable, since 
the global density exceeds the local density of the other jammed mode. As a result the flow 
has a constant j = 0.5 value in this density region (figure 1). 

In the 'bulk' region (i.e., not in the jam) mainly the densest free moving mode (pbc  = 0.1 
and j = 0.5) is present, which is produced when cars are released from a jam. This mode 
explains the plateau at 1/2 for a wide range of curb densities. The existence of two well- 
defined modes of propagation (jammed and bulk) is reminiscent of fluid-steam separation: 
;,ere the role of the steam is played by the low-density state, and the jam represents the 
fluid phase. For low car densities there is a non-ordered car flow, which is the equivalent 
of the gas phase. 

In conclusion, we have studied a onedimensional tratlic model with quenched noise 
(curbs). We showed that even a single curb causes jam 'crystallization' at suficimtly high 
car densities. We observed extreme sensitivity to the shot noise both at low and high curb 
densities. 
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